Open, Programmable, Secure 5G (OPS-5G) Program

Jonathan M. Smith DARPA Information Innovation Office

Proposers Day

Arlington, VA

January 7, 2020

Distribution Statement A: Approved for public release; distribution is unlimited.

Create open source software and systems enabling secure 5G and subsequent mobile networks

From 4G to 5G:

5G Benefits:

10-100x bandwidth 1000x capacity 0.1x latency 100x connections 10x device battery life Programmability: - have it your way

OPS-5G

Open Source:

- Increased code visibility
- Hardware/Software decoupling

Programmable:

- Bespoke networks
- Adaptation velocity

Secure:

- Increase trust at softest points
- Increase defender velocity

5G Risks:

Many untrusted devices Opaque proprietary software Non-US hardware Misuse of programmability *viz* Javascript on WWW

Vision: Open, Programmable, Secure 5G (OPS-5G)

OPS-5G will develop a portable standards-compliant network stack for 5G mobile that is free, open source, and *secure by design*

DARPA What's New in OPS-5G?

Today	No OPS-5G?	OPS-5G Benefit / TA
Vendor proprietary software	Open source lags in code velocity	Machine Translation adds code velocity TA1: Standards Meet Software
5G-attached Internet of Things (IoT)	Cost pressures elide security	Scalable cost-effective architectural solutions TA2: Many-scale 5G node and network security
Suspect shared resources	Vulnerable to, e.g., side channel leaks	Trusted nets on untrusted infrastructure TA3: Secure slices
5G features open new attacks	Adversary control / denial / agility	Quick and flexible response TA4: Principled programmable defenses

OPS-5G overcomes unmet 5G security needs

Program Structure and Transition Plan

TA1 Challenge: Hardware/Software Decoupling is Hard!

Issues:

- Requires collaboratively developed, well-defined standards (IETF, etc.)
- Portability requirement increases development complexity and time
- Increased development time exacerbated by evolving standards

Technical Area 1 – Standards meet Software

Goal: Accelerate development of open source software from standards

Approach: Extend NLP to generate formal machine-readable representation of standards

- Rigid document structure, limited domain in 5G standards enable automated translations
- Promising pathfinders (KANT, ARSENAL, TAILCM)

TA2 Challenge: Security at scale

Issues:

- Security across devices with vastly disparate SWaP
- Cost-effective solutions (\$2, 5mm²)
- Requires decentralized operation, ease of use
- Must support authentication, remote attestation, group membership, etc.

Technical Area 2 – Many-scale 5G node and network security

Goal: Cost-effective SWaP-conscious crypto, scalable security protocols

Possible Approach: Extend Berkeley JEDI

[Source: David Culler, UC Berkeley]

TA3 Challenge: Operating over Untrusted Nodes and Nets

Network slices:

Virtual networks with configurable performance characteristics operating over shared hardware

Issues:

- Sharing of hardware/resources create potential timing channels
- Threats from untrusted network elements: Who owns that net?

Technical Area 3 – Secure Slices

Goal: Provide security over network resources provided by and shared with unknown entities Approaches: Route selection avoids:

- (1) Nodes that can't attest
- (2) Shared resources

TA4 Challenge: Adaptive Adversaries at Tera-node Scale

Issue:

 5G programmability radically increases risk of network attack

Exemplar: IoT DDoS (Mirai)

Worldwide Mirai Botnet Infections

[Source: Securityledger.com]

Peak Size: ~600K nodes (cameras, routers, game boxes)
Peak volume: 623 Gbps against Krebs [Antonakakis17]
5G will have 60-600 billion (!) nodes by 2023!!

Technical Area 4 – Principled Programmable Defenses

Goal: Increase security against DDoS attacks

Approach: Use programmable elements of 5G for defense

Example: Botnet early warning using machine learning (XD3: Two Six Labs)

Warning triggers deployment of Ioannidis and Bellovin "Pushback"

On-the-fly node programmability enables real-time distributed detection and diagnosis of attacks and deployment of appropriate defenses

[Source: Steven Bellovin, Columbia Univ]

Notional OPS-5G Technical Area and Program Metrics

	Phase 1 (18 months)	Phase 2 (18 months)	Phase 3 (12 months)
TA1 Precision, recall	60%, Independent Test & Evaluation (ITE)-chosen document	80%, ITE-chosen content and doc	95%, ITE-chosen content and doc
TA2 Security/SWaP	256-bit "encrypt & sign" in < 10 sec using < 70% battery	Resist ITE penetration test of many-to-many IoT for 4 hrs using < 50% battery	Resist ITE penetration test on 10K IoT+User Equipment for 2 days using < 25% battery
TA3 Reduction in secure slice timing channel capacity	3x	10x	50x
TA4 Mirai mitigation time	60 sec on 1G emulated nodes	1 sec on 10,000 IoT nodes	60 sec on 1T emulated nodes
Milestone Demonstrations	Secure voice call between DARPA and USR&E test-site	Data from 1K devices to DARPA over untrusted hardware	Commercial availability in User Equipment and at least 1 US mobile network operator

Independent Test and Evaluation (ITE)

- Voice of the Offense (for Performers)
- Evaluation and Assessment (for DARPA)
- Will use USG entity, e.g., NSA, LTS, Sandia

OPS-5G Summits and 5G Standards

- Transition requires adoption of OPS-5G designs into formal 5G standards
- Program will continually engage with 5G standards committees and US carriers at "summits"

www.darpa.mil